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ABSTRACT

Three numerical procedures are presented for updating regressions. All three

methods are based on QR factorization, but after that they use different philosophies

to update the regression coefficients. Elden's algorithn updates using only the

triangular matrix R. This procedure does not use orthogonal transformations, but it

uses hyperbolic rotations. The modified Gram-Schmidt QR process is used by Gragg-

Leveque-Trangenstein's method where the matrix with orthonormal columns is stored

and updated. Chan's algorithm computes a column permutation I and a QR

factorization of a matrix A such that a rank deficiency of A will be revealed. Although

the three methods are based on different ideas and can be used for different purposes

their comparison shows that Chan's algorithm is the only accurate one in the rank

deficient case, and that Gragg-Leveque-Trangenstein's method is the cheapest and the

most stable.
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I. INTRODUCTION

A. BACKGROUND

Regression analysis provides a variety of modeling

techniques that allows the analyst to relate a dependent

variable to one or more independent variables. The

mathematical complexity of the model and the degree to which

it is a realistic model will depend on how much is known about

the process being studied and on the purpose of the modeling

exercise. In preliminary studies of a process or in cases

where prediction is the primary objective, the models will

frequently fall in the class of models that are linear in the

parameters. That is, the parameters enter the model as simple

coefficients of the independent variables or functions of the

independent variables. Such models will be referred to loosely

as linear models. In many statistical problems, it is useful

to express the dependent variable as a linear function of the

independent variables. Furthermore, regression analysis can

summarize data and quantify the nature and strength of the

relationships among variables. Regression analysis can also be

used to predict new values of the dependent variables based on

observed relationships.



B. ANALYSIS OF REGRESSION

As the reader will see in the following chapter, the main

purpose of this thesis is to analyze the efficiency and

numerical stability of some procedures for updating

regressions. Most regression problems, however, require

decisions on which variables to include in the model, the form

the variables should take, for example, X, X2, l/X, etc., and

the functional form of the model. It is assumed that there is

a set of t candidate variables, which presumably includes all

relevant variables, from which a subset of r variables is to

be chosen for the regression equation. The candidate variables

may include different forms of the same basic variable, such

as X and X2 , and the selection process may include constraints

on which variables are to be included. For example, X may be

forced into the model if X2 is in the selected subset. This is

a common constraint in building polynomial models.

There are three distinct problem areas related to this

general topic:

0 The theoretical effects of variable selection on the

least squares regression results.

n The computational methods for finding the "best" subset

of variables for each subset size.

* The choice of subset size (for the final model), or the

"stopping rule".
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This thesis mainly discusses the second problem area of

finding the more efficient and numerically stable

computational methods. Also, we generally discuss the criteria

for the "best" subset size choice, in other words the criteria

for the "stopping rules".

The simplest linear model involves only one independent

variable and states that the true mean of the dependent

variable changes at a constant rate as the value of the

independent variable increases or decreases. Thus, the

functional relationship between the true mean of Y1, E(Y;), and

X, is the equation of a straight line,

E (Y) =P0 +P1 (X)

where 0 is the intercept, or the value of E(Y) when X = 0,

and 0 1 is the slope of the line, or the rate of change in E(Yi)

per unit change in X. The constants 00 and i, are population

parameters which are to be estimated from the sample of

observations.

The observations of the dependent variables, Y1 , are

assumed to be random observations from populations of random

variables with the mean of each population given by E (YJ). The

deviation of an observation Y1 from its population mean E(Yi)

is taken into account by adding a random error, ej, to give

the statistical model

3



,=PO +PjXj+1E. (1. 1)

The subscript i indicates the particular observation unit, i

= 1,2,...,n. The Xi are the n observations of the independent

variable and are assumed to be measured without error; that

is, the observed values of X are assumed to be a set of known

constants. The Y, and X, are paired observations; both are

measured on every observational unit. The random errors E1

are assumed to be normally, independently and identically

distributed:[Ref. 1]

Ei-NID(O,o02)

1. The Matrix Model

Given the above regression model, we can write it in

matrix form as Y = X6 + E, where Y is the n x 1 column vector

of observations of the dependent variable. The n x p matrix X,

where x,, = x2o = ... = xr = 1, will be called the regression

matrix, and the x1,'s are generally chosen so that the column

of X are linearly independent; that is X has rank p. However,

in some experimental design situations the elements of X are

chosen to be 0 or 1, ani the columns of X may be linearly

dependent. In this case X is commonly called the design

matrix. Also, P is the p x 1 vector of parameters to be

estimated; and E is the n x 1 vector of random errors.

Writing out the components of Y = Xfi + E yields

4



y1 X10 X11 X12 ... p P1~ 0~

Y2 X 20 X 2 1 X2 2  -- 2p P C2

.. + • '(1.2)

Y. xno xzn 2 .. XnP PPI E

(nxl) (nxp') (p'xl) (nxl)

The elements of a particular row, r, of X are the

coefficients of the corresponding parameters in f which give

E(Y,). The vectors Y and c are random vectors; the elements of

these vectors are random variables. The matrix X is considered

to be a matrix of known constants. The vector P is a vector of

unknown constants and is to be estimated from the given data.

Using the above assumptions on c,, the random vector

c has a multivariate normal distribution with a mean of the

zero (0) vector. The variance-covariance matrix for any random

vector of n elements is defined as an n x n symmetric matrix

with the diagonal elements equal to the variance of e, and the

off-diagonal elements equal to the covariance between ei and

C,. Let Z be a n x 1 vector of random variables z,, z2, z 3, ...

,z , the variance-covariance matrix of Z is the following

n x n matrix.

5



var(z1) cov(z 1 , z 2 ) ... cov(z 1 , z )

Var(Z) cov(z 2 1z) var(z.) ... cov(Z21 z.)

COV(z, z) Cov(z, Z) ... var(z)

The variance-covariance matrix of E is 102, and since

E is independent and identically distributed, the distribution

of c is written in shorthand notation as

C ~N(O,102)

where I is the n x n identity matrix and 02 is the common

variance of all E,. Furthermore, since the elements of X and

are constants, the X0 term in the model is a set of

constants being added to the vector of random errors, E. Thus,

Y is a random vector with mean vector X0 and variance-

covariance matrix I02:

E(Y) =E(Xp+c) =E(4) +E(e) =XP (1.4)

Var(Y) =Var(x3+e) =Var(c) =Io2  (1.5)

Var(Y) is the same as Var(E) since adding a constant to a

random variable does not change the variance. When E is

multivariate normally distributed, Y is also multivariate

normally distributed. Thus,

6



y-N(X4, 1u 2) (1.6)

This result is based on the assumption that the linear model

being used is the correct model [Ref. 2:.68].

2. The Normal Equations

Before considering the problem of estimating P, we

note that we are referring to the model (2), where Xi0 is not

necessarily constrained to be unity. In the case when X 0 t 1

we have to use a notation in which i runs from 0 to p-i rather

than 1 to p. However, since the major application of the

theory is to the case Xi0 1 1, it is convenient to separate fl0

from the other flj's right from the outset.

The oldest method of obtaining an estimate of fl is the

method of least squares. It dates back at least to Gauss and

consists of minimizing E1 i
2 with respect to P (see Fig. 1);

that is, setting q = X#, we minimize ETE1 = Y - q112 subject

to qEN[X] = W, where W is the range space of X (y:y=Xx for

some x). If we let q vary in W, IY - q 11 (the square of the

length of Y - q) will be a minimum for q = q* when (Y - q*) is

orthogonal with W (see Fig. 1).

Thus XT(Y - q) = 0 (1.7)

or

1 We denote the transpose of a vector y by yT, and

similarly for a matrix transpose.

7



B4y-q

wY 0

Figure 1. The method of least squares consists of finding
A such that AB is a minimum.

Xrq" = XPY. (1.8)

Here q* is uniquely determined, being the unique orthogonal

projection of Y onto W. Now given that the columns of X are

linearly independent, there exists a unique vector (0) such

that q* = XP. Therefore substituting in (1.8) we have

XTX = Xry (1.9)

the so-called normal equation(s). At this point we assume that

X has rank p, so XTX is positive definite and therefore

8



nonsingular. If so, equation (1.9) has a unique solution,

namely,

= (XX) -1 X2y (1.10)

Here 0 is called the ordinary least squares estimate of ,.

Computational methods for calculating 0 are given in the

following chapters. Notice that 0 can also be obtained by

writing

C c=(Y-XP)T(Y-XP) = YTY-2p7X7Y+P'rX7XP

using the fact that pTXTY = (pTXTy)T = YTXp, and differentiating

ETE with respect to f. Thus from aETE/a 0 we have

-2XTY+2XXp = 0

or

x xf3 = X2 y.

This solution for P gives us a stationary value of Ce, and

a simple algebraic identity confirms that 0 is a minimum

[Ref. 2].

The multiplication XTX generates a pI x pI matrix

where the diagonal elements are the sums of squares of each of

the independent variables and the off-diagonal elements are

the sums of products between independent variables. The

general form is

9



x., Ex 1 i x1 z 1,2 ... 1jxP1 x1

XTX1 Ejx j E Xjxi ... (1.11)i;

x,' E X I, E yxt2x ... Exj 4

Summation in all cases is over i = 1 to n, the n observations

in the data. When only one independent variable is involved,

XTX consists of only the upper-left 2 x 2 matrix. Inspection

of the normal equations will reveal that the elements in this

2 x 2 matrix are the coefficients of 00 and 0..

The elements of the matrix product XTY are the sums of

products between each independent variable in turn and the

dependent variable:

XTY X1= (1.12)

The first element, EYi, is the sum of products between the

vectors of ones (the first column of X) and Y. As is mentioned

above, if only one independent variable is involved, XTY

consists of only the first two elements.

10



The fitted regression Y=0, is denoted by

S( = [(i)]) , and the elements of

e = Y-Y = Y-XD = (I,-X(X2X) 1 X2)y = (I-P) Y, say,

are called the residuals. The minimum value of E TE, namely,

= YTY-2 TX 2y, 0 TX TX

= y2y-0TXTy+0T[XTXD-XTy

= YTY-pXTY = YTY- TXT, (1.13)

is called the residual sum of squares (RSS). Notice that Y and

e are uniquely defined by P.

C. VARIABLE SELECTION IN LEAST SQUARES ANALYSIS

The purpose of the least squares analysis will influence

the manner in which the model is constructed. Hocking [Ref. 4]

relates six potential uses of regression equations given by

Mallows [Ref. 3]:

0 Providing a good description of the behavior of the

response variable

a Prediction of future responses and estimation of mean

responses

11



M Extrapolation, or prediction of responses outside the

range of the data

* Estimation of parameters

* Control of a process by varying levels of input

* Developing realistic models of the process.

Assume that the correct model involves t independent

variables but that a subset of p variables, chosen randomly or

on the basis of external information, is used in the

regression equation. Let Xp and fp denote submatrices of X and

P that relate to the p selected variables. OP will denote the

least squares estimates of flp obtained from the p-variate

subset model and MS(Resp) the mean squares residual obtained

from the p-variate subset model. After the above the following

properties are summarized:

* MS(Resp) is a positively biased estimate of o2 unless the

true regression coefficients for all deleted variables are

zero.

* OP is a biased estimate of Op and less variable than the

corresponding statistics obtained from the t-variate model

[Ref. 4].

Stepwise regression methods are variable selection methods

which identify good (although not necessarily the best) subset

models, with considerably less computing than required for all

possible regressions. The subset models are identified

sequentially by adding or deleting, depending on the method,

12



the one variable that has the greatest impact on the residual

sum of squares. These stepwise methods are not guaranteed to

find the "best" subset for each subset size, and the results

produced by different methods may not agree with each other.

D. RESEARCH METHODOLOGY

Given the regression model Y = XP + c, where X is n x p,

a number of computational techniques have being suggested for

solving the following steps:

" Solve the normal equations XTX = XTY.

" Calculate the residual e = Y-2$.

* Calculate the residual sum of squares RSS = eTe.

* Update the regression model (that is, add or remove a

row of X).

* Add or remove a regressor (that is, add or remove a

column of X.)

* Calculate an F-statistic for a general linear

hypothesis.

Solving the above steps is a common problem in a computer

laboratory. These problems arise in a variety of areas and in

a variety of contexts. Linear least squares problems are

particularly difficult to solve because they frequently

involve large quantities of data, and they are frequently ill-

13



conditioned2 . The research methodology will be to describe

acceptable procedures for updating regressions. The procedures

to be chosen should be economically attractive and numerically

accurate, in the case that the number of observations in the

regression is large compared to the number of variables in the

regression model. Each of these procedures (algorithms) has

advantages and disadvantages which will be explained below.

E. THESIS ORGANIZATION

1. General

The main purpose of this thesis is to bring to the

attention of readers numerically acceptable procedures for

adding and deleting rows and columns from a regression model.

For the case of a single row to be inserted or deleted, the

algorithms use simple techniques: plane or hyperbolic

rotations and the Gram-Schmidt process. The algorithms for

inserting rows are stable, but the problem of deleting a row

may be ill-conditioned and some algorithms for this process

may be numerically unstable.

The need for updating regression results arises for

various statistical or numerical reasons. When data are

2A set of linear equations Bx = c is said to be ill-
conditioned if small errors or variations in the elements of
B and c have a large effect on the solution x.

14



arriving sequentially, it may be undesirable or impossible to

wait for all the data before obtaining some regression

results. In various time-series problems, one is interested in

the changing relationships between variables. A regression

model with a fixed number of lagged terms, as it moves over a

series of data, generates a "window" on the sample, with a new

observation added, and an old one deleted3, as the window

moves to the next point in the series [Ref. 5].

2. Basic Schedule

The procedures for updating regressions that we shall

discuss here are the following:

m An algorithm based on the normal equations

(Efroymson M. A., 1960[Ref. 6], Draper N. and Smith

H., 1966[Ref. 7]); this had been the standard

introductory approach in regression courses. In this algorithm

the regression coefficients are solved using Gauss-Jordan

elimination on the normal equations. However, the problem of

solving the normal equations is frequently much more ill-

conditioned than the original problem of solving the

overdetermined linear equations.

* Stepwise regression analysis with orthogonal

transformations (Lars Elden 1972)[Ref. 8]. In this

3But in this case the problem can be ill-conditioned,

because the rank can be decreased by this operation.

15



algorithm a method is presented using QR-decomposition. In the

QR-decomposition or factorization, we express a matrix as a

product of an orthogonal matrix Q and an upper trapezoidal

matrix R (actually R stands for right trapezoidal). Many of

the ideas used in this method have been proposed by Golub

(1965) [Ref. 9].

m The modified Gram-Schmidt triangular factorization

(W. Gragg, R. Leveque, J. Trangenstein 1978)

[Ref. 10]. This approach is A = QR factorization with

Q having orthonormal columns and R upper triangular. In this

algorithm one is able to add or drop regressors (columns of A)

or observations (rows of A) using essentially only the storage

needed for A and to secure numerical accuracy possibly at the

expense of additional computation and storage.

* Rank revealing QR-factorization (T. Chan, Hansen

1986). In this algorithm a method is presented for computing

a column permutation, Wl, and a QR factorization, AU = QR, of

an n by m (n > m) matrix A such that a possible rank

deficiency 5 of A will be revealed in the triangular factor R

having a small lower right block. Notice that a matrix A is

rank deficient with rank deficiency d if it has at least d

4 is a permutation matrix where fEIn and is the product
of PIP2... Pn-. Notice that Pi denotes the matrix representation
of the column interchange that precedes step i.

5This means that the columns of the observation matrix A
are not linearly independent.

16



singular values. For matrices of low rank deficiency, the

algorithm can reveal the rank of A, and the cost is only

slightly more than the cost of one regular QR factorization.

A posteriori upper and lower bounds on the singular values
6

of A can be used to infer the numerical rank of A.

In Chapter II we discuss the general theory about

updating regressions. A process for adding and dropping

regressors follows. Techniques are presented with stepwise

regression in mind, and we discuss how to compute the various

quantities of statistical interest using the algorithms.

Chapter III mainly covers computational details of the

algorithms, which are used to compute the regression

coefficients. In this chapter also a simulation is applied to

the basic algorithms for validating the models by creating

useful numerical results. In the same chapter we discuss the

measures of effectiveness of each model based on the

previously generated numerical results. Chapter IV concludes

the thesis and offers recommendations.

6The singular values of a matrix A are the "diagonal
elements" of S, one of the three component matrices that A
splitted to avoid singularity.

17



II. BACKGROUND THEORY

A. GENERAL THEORY FOR FITTING A SPECIFIED REGRESSION

Several techniques can be used to solve the problem of

updating regressions. Efroymson's algorithm [Ref. 6] is one of

the earlier ones used. It uses the method of Gauss-Jordan

elimination on the normal equations ATAx = ATb. A more

efficient algorithm is to use the Cholesky factorization of

the Gram matrix ATA into RTR where R is upper triangular. The

solution to the original system is then found by a two step

triangular solve process:

RTy = A2b, RX = y ATAx = RTy = A2b.

Another way to solve the above problem utilizes orthogonal

transformations. This approach, called QR factorization, is

the basis of the thesis algorithms and may be slightly slower

than the normal equation approach, but is more stable

numerically. The QR factorization of a matrix can be computed

using the following methods:

0 Classical Gram-Schmidt (CGM).

0 Modified Gram-Schmidt (MGS).

0 Givens rotations.

0 Householder reflection (Elden's algorithm).

18



I QR with Column Pivoting for the Rank Deficiency case

(Chan's algorithm).

5 Daniel-Gragg-Kaufman-Stewart method (Gragg-Leveque-

Trangenstein's algorithm).

The latter algorithm uses rotations and the Gram-Schmidt

process with reorthogonalization.

Applying the QR technique on a square nonsingular system

Ax = b we have (QR)x = b and by the associative law of matrix

multiplication Q(Rx) = b. Defining y = Rx, it follows that Qy

b. Hence, Ax = b is solved in two steps:

1. Solve Qy b for the unknown y.

2. Solve Rx y for the unknown x.

The second system is solved by back substitution. The first

system is easy to solve since Q is orthogonal. Multiplying Qy

b by QT yields QTQ = QTb. Since Q is orthogonal, QTQ = I and

y = QTb. When A has more rows than columns and is of full rank

the above process yields the solution of the least squares

problem I)b - AxI12
2 = minimum. The key to the numerical

stability is the orthonormality of the columns of Q. To avoid

loss of orthogonality Gragg-Leveque-Trangenstein's algorithm

applies reorthogonalization whenever iI/Ijull is small (say,

less than 12/2), where u and u is the vector to be

orthogonalized and its orthogonal projection, respectively.

Finally if A is rank deficient then the QR factorization

need not give a basis for range(A). This problem can be

19



corrected, as mentioned below, by computing the QR

factorization of the column pivoted version of A, Al = QR

where H is a permutation, and applying Chan's rank revealing

scheme.

In the least square problem, statisticians and numerical

analysts use different notations for the same entities, i.e.,

the matrix of the observations of independent variables, the

vector of the dependent variables, the vector of random

errors, etc. To avoid misunderstandings caused by using both

notations in the following chapters, we built the following

TABLE I of notational correspondents.

Most numerical analysts use n to represent columns of a

matrix and m to represent rows. Ot " - interchanges m and n,

and we will use this notMt]oi±.

20



TABLE I

NOTATIONS USED IN REGRESSION ANALYSIS

DESCRIPTION STATISTITIANS N. ANALYSTS

Independent var. matrix X A

Dependent var. col. vector y b

Vector of parameters to be x

estimated

Rows of indep. var. matrix n n

Cols of indep. var. matrix p m

Vector of random errors r

Unique solution to the x

normal equation

The vector of estimated p7

means of the dep. var.

The idempotent n x n matrix P QQT

The residuals vector e r

Residual sum of squares SS(Res) rTr

Signific. level enter/stay F a/ V

7The numerical analysts describe the vector p = Ax = b-r,
as the "orthoprojector onto I(A)".
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B. METHODS FOR UPDATING REGRESSIONS

Before starting this section, let us introduce some

terminology. The upper case letters denote matrices, lower

case letters denote vectors, and Greek letters denote scalars.

Thus we write

,tl (P1 (P I (l all, ... Cg., ti "'"

x=p =  . , b=y= . = ., A=X= .(...= ..... (2.1)

following the notational correspondents of TABLE I. For

notational convenience we set x = = b and the normal

equations can now be written Xb = y or Ax = b.

1. Lars Elden (1960)

In Elden's algorithm the upper triangular matrix R in

the QR-decomposition of A (in the model Ax = b) is determined

by successive Householder transformations so that after k

steps A has the form

PktPA_l ... P, _k+ A-c )
(k) () (n-k-!)

R(k) is upper triangular and T(k) is k x (m - k). Furthermore,

Pk-1 = k-2wk.lwk%, where Wk+1 with 2wk.w T r = 1 is now chosen so
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that k first rows are left unchanged and

() a = lek, where III = Ia.k)
Pk., (

8 k) k'k112

After m steps X will be completely triangularized:

* P.- ... PIA 0)

In stepwise regression analysis, however, the final

result may be of the form

TA = (R ' (2.2)

where R(P) is an upper triangular p x p matrix. The

corresponding right hand side and the residual vector are:

77 = ( a nd (

d (P)a' d = (dP))

The regression coefficients are calculated from the

system R(P)b = c(P). In most cases the column vectors of X are

not added to the subspace in the natural order, so that only

after a permutation of columns is QTA of the form shown in

equation (2.2).

a. Choice of Vector for EnlarginQ the Subspace.

We shall add to the subspace the vector that will

make the norm of the residual vector decrease as much as
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possible. Since only the m - k last rows of the matrix are

changed in the kth step we can without loss of generality

restrict ourselves to considering the first step of the

analysis. We have the linear system of equations Ax = b, with

A and b as in (2.1). Let a, = (cxi, k2j, --- , anj) T denote the

jth column vector of A. We shall multiply (A b) by an

orthogonal matrix P = I - 2wwT, where IwI2 8 = 1, so that for

some j we have Pa3 = ael, where JI = IVaj1 2. After this

transformation the residual vector is given by the last n - 1

components of Pb and since we were to decrease the norm of the

residual vector as much as possible, j shall be chosen so that

the first component (Pb)1 of Pb will be as large as possible.

Now we have (Pb) 1 = (Pb)Te, = (Pb)T ej/l = bTPTPaj/, = bTa/X.

Thus we shall select j so that the quantity

(b Ta )
2

will be as large as possible [Ref. 9].

b. Choice of Vector for Diminishing the Subspace.

Suppose that after a number of steps (A : b) has the

form

8The Euclidean length of a vector is often denoted IlxII2,
also called the 2-norm, since the components of x are raised
to the second power.

IX112 = 2
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R(k) D(k) c(k) (2.3)

0 A(k d (k))

where R(k) is an upper triangular (k x k) matrix. Let rp = (pi,

p2 p, --- ,P~p, 0 , 0)T denote the pth column vector of R,.

Now if the ath column vector of A is removed we can by

successive rotations in the ti. 1+1), (1+1, 1+2) ,..., (k-l, k)

planes transform Rk to triangular form apart from the jth

column. That is, we compute the coordinates of the remaining

column vectors of A in the orthonormal basis where the jth

base vector has been excluded.

Let 0 (01) denote the orthogonal rotation matrix in

the (J, i+l) plane which deviates from the unit matrix only in

the elements qj.j = qj+,.j+l= cosO and qj3 j+l = -qj+, j = sinQj. If

@j is chosen so that

C oO j - PI, j -2, sin _= Pj ,j
S2 2

we get, g- rj I 
= Qjj-1(Plj ~I,... pj,Jj Ipj , J+1,O,. .,0) T  =

(Pl,J+I' ' PJ-I,J+l I , JI " 0 " 0 "  ... ,0) T ,  where

PI, 1 = VP",1 +J-,

Further we have

QJJ+1 r. = (Pij' " ' Pj-ij' Pjj' Pjij "0 ' . " .'0)
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where p' 3 = cosej pa,, and p'± 1,j = -sinO, pj,j. After k- -

rotation we have transformed Rk to the form

P11 .R. . Pj.j Pjj,'j PI.k

PJ-1,~~~~ .- .JIJ P -,* PJ-l,kr

I ! !

& k ) P i Ix P J.', = .,, p . . . . P . ,. k

II• ' • Pk-l,k

Pk, j 0 . . . 0

(ekl]) (es)
where Ok - Q-,k, . . . ,

The preceding can be illustrated by the following schematic

example (k = 5, j = 3)

XX IXXXXk XXX X)

X X X rotation X X rotation
on (3,4) on (4,5)

R= xx XX Xx

x x + )

where x = any nonzero element, + = nonzero element being

introduced, 0 = element being annihilated.

To update the transposed inverse R -T = X- we

multiply by the same rotation matrices from the left as in the

following schematic example.
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x m

x x rotation X x rotation x
on (3,4) on (4,5)

XT= X XX x x D + xx x

xxxx xxxx xxxx

Since R0
(k) can be transformed to triangular form by permuting

its columns, it is easy to see that (R0k))-1 will be triangular

if the same permutation is performed on its rows. Therefore

the jLth column of Qk (R'k ) - = (R0(k))T has only one nonzero
element. Let x, = (0, ... , 0, T, ... , EJk denote the Ith

column vector of (R(k) - T. Then Qkxj = Xek. Since IIxjl!2 = IQkXjll

we have Ilt = 1!x,112 . The right hand side of (2.3) is multiplied

by Q, and as the dimension of the subspace is decreased the

increase of the norm of the residual vector will come from the

last component (Qck)) of Qjc(k). But

(QkC k = e kQkC M = 
_ek QkC (k - Qk c - C

Thus in each step we have to find for which value of

= x1 C(k))2
XI

is minimal, and if for this j the increase of the norm of the

residual vector is not significant the jth column vector of X

is removed from the subspace (the variable x. is deleted from

the regression).
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c. Inserting a Row (Observation).

In some applications it may be desirable to insert

a row to the matrix of observations after the analysis is

finished and study what influence that row can have on the

regression coefficients. This can be done without having to

start from the beginning again using the QR-factorization that

has already been done. The procedure can be illustrated by the

following somewhat simplified example. Suppose we have the

system of equations Rx = c, where

Pl P12  . . Pin Y,

P2 2  . . . P2, Y2 1

Pm2 ,

The system is augmented by a row (an observation):

P11  P12  * ' ' Pin Ti

P22  . . . P2n Y2

P0  .,.,,

Pnn Yn

a-1,i D+1,2 . . . +In\P +

If we multiply [R, r,] by a rotation matrix Q1n+1 (01) in the

(1, n+1) plane where 0. is chosen so that
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Cos 01 = 11 / /P+ . sin e 1 = a 1 1, 1 VP1 +a 2

we obtain

(1) (1) (1)
P11 P12 . . . Pln

P22  . . . P2-

R = Q= ,n RO

P=.

(1)_( )

0 +1,2 • an+,n2

where

(,) = Cos 6 p ,j + sin 01 a,.., ,..
(1)

+1,j = -sin 0 1 Pl,j + cos 81 an.,j = 2, ...

After n successive rotations in the (1, n+1), (2, n+1), ... ,

(n, n+l) planes

((2) ((0))P11 P1252, . . 0l
1 22) (2)P22 . . . P2n

)ZO° ( n. (.). . .. (01) Ro

0 0 . . . 0

c- has been transformed:

2 = 1) C(1) C)(2) n(n))

Now we have the system R, W x = (c 2 , C2
2 ), .,
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(the component b,,, " belongs to the residual vector)

d. Removing a Row (Observation).

Sometimes it may be desirable to remove a row of

the matrix of observations after the solution has been

obtained. This can be done in a very simple manner without the

analysis having to be done from the beginning again. Suppose

that the matrix A of observation has been decomposed:

(R)A r Ab = ( ) (2.4)

Let a, (v = 1,.. ,m) denote the row vectors of X. Then the

normal equat , 3 of the system Ax = b can be written in the

following orm:

M M

Eavav = Ev
V=1 V=1

If ap is the row of A that is going to be removed, let

S = ) where i2 =-i.

Then S T S= R- R - a,, a,, = RT QAT QA R - apt ap =

=A: A - a,' ap =

E a av.
w -1, vp

30



It is easy to see that if the vector c in (2.4) is augmented

by a component ibF, the corresponding right hand side of the

normal equation will be

X

V-I, Vsp

S can be brought to triangular form by successive

multiplications by matrices Tl,,,I, T2 ,n+1 , ... ,Tnn+ where Tvn+1 is

not unitary but complex orthogonal (T , +12 = I) Consider the

first step:

Let

1 0 1

rn~l 1 (2.5)
2 2

P 0 -Pill

Then

I I 1

Pul P12 . . . Pin

P2 2  . . . P2 2

Pnn

0 p2 • • •

where
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P= J =1, ... ,

P I ( -p 12)

apj = J = 2,...,n.

After n transformations S has been brought to the form

and the right hand side to the form

where we denote with double prime (") the final components of

the normal equations. Then we have the system R"z = c" to

solve. Notice that the component 1b1 belongs to the residual

vector. The hyperbolic rotations that are used to update the

regression coefficient by working only on the matrix R are not

unitary. Non-unitary transformations can destroy numerical

stability.

2. Gragg-Leveque-Trangenstein (1978)

These algorithms are based on the use of (orthogonal)

plane rotations and the modified Gram-Schmidt process with
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reorthogonalization. We compute the following quantities of

interest in a regression analysis, with stepwise regression:

N The least squares coefficients b,

E The residuals r = y - Xb,

* The ANOVA table 9,

* The covariance matrix for the regression

coefficients, and

m Partial F-tests for the significance of a given

variable in the regression.

a. Stepwise Regression: Adding and Deleting

Regressors

Let us have entered k - 1 columns of X in the

model y = Xb, and we wish to add the next column. This means

that we want to find a k x k matrix Qk whose columns form an

orthonormal basis for the span of the k columns of X, assuming

that Qk- is known. The remaining columns of X are regressed

upon the first k columns. Let F. be a k x k triangular matrix

which maps the orthonormal basis into the original basis. Also

rk is the orthogonal projection of the vector y of dependent

variable onto the space orthogonal to the space of the first

k columns. In other words, r. is the residual vector.

Mathematically, with k - 1 columns entered, we have factored:

9Here, the residual sum of squares is computed directly,
and not by subtracting the sum of squares due to regression
from the total sum of squares.
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{X Y~={Qk~ Ak-1 1 02 1 0(2.6)

where Qk-1 is n x k-1) and

QkITQkl = I; (2.7)

also the columns of Akl and rk_ are orthogonal to the columns

of Q.-1. This means that

Qk-ITAk- =0, QK-1.
Trk-l=0; (2.8)

Also Rk_1 is (k-l) x (k-1) upper triangular; and

Ck-1 =Qk-l Y. (2.9)

The above procedure was a step of the Gram-Schmidt

process that can be viewed as a partial QR factorization.

Although there are some similarities between the Gram-Schmidt

factorization and Householder's factorization, there are also

some important differences. We are going to discuss that in

the next chapter during the comparison process.

To update the above factorization (i.e., entering

the kth column or, in other words, to add the kth variable),

we perform the following steps:

N Repartition:
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\Rk-1 Sk Tfk Ok-l'
I Yri o Z O " (2.10)

X j Qk-1 ak k k-1 0 0101J

0 0 T 1J or 0 or

" Normalization, and the equation (2.10) becomes:

( Rk-i Sk Tk Ck-1

1 ak Ak rt1o Ia4~ 0'r 0Ok- laI 0

I 0 0  0

" Orthogonalization, with (q - ak/Ilakil), to

obtain:

Rko. ok o.. 'Ck-
(Qk-1 qk Ak-qk( qkTA ) 'rkl Iqk(qk7 rk-) rjja; k Tk Ckrir-

0 0 1 10

* Relabel, so that the equation (2.10) can be

written as:

Qk A, Rk Tk Ck)Qt Ak r 0  1 0

The above mathematical statements complete the

insertion of the kth regressor. Furthermore the work required

is essentially 2n(P - k) multiplications and additions. The

storage space required and the part of storage affected by the

algorithm is illustrated by these partitioned matrices.
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Suppose now that we have to enter the kth variable

(column) into the model. In this case the appropriate column

to be added is the one which minimizes the norm of the

residuals. We have that qkTrk 0 and from the

orthogonalization and relabel steps, that

r' = r._ 1-- q.(q.7r,_1 ) or rk- = rk+=(qkrk_,) q.

By the Pythagorean theorem,

Irk_l12 - IIr I2 = (qTr, 1 ) 2  (2.11)

so when we add the kth variable to the model the change in the

residual is (qTrk_1) 2 . Recalling that qkT = akT/U1akIl, the change

can be expressed as (q'rk-1 )2 = (akTrk-1/1akI) 2 . So the chosen

column to add at the kth stage is a column aj, k<j!p, for

which IajTrk-lI/lajil is maximal. A test for significance should

be satisfied for the above column to be entered into the

regression. The work for choosing the column to add is on the

order of 2n(p - k) multiplications and additions.

To compute the regression coefficients we have to

follow the next steps. A n x k matrix Xk is formed by the

first k columns of X. It has been factored Xk = QkRk, where Qk

is n x k with orthonormal columns, and Rk is upper triangular.

The projection of y onto the range of X can be written as:

y-rk = QkC = =b, = Q*Rkbk.

So the regression coefficient bk can be computed easily by

solving the following triangular system
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Rk = Ck,

reguiring an order of 0.5k 2 multiplications and additions.

The next step is the computation of the total sum

of squares Ilyll2 . A smart mathematical computation is taking

place here. After computing the sum of squares due to the

regression at the kth stage of the regression, as:

= Iq bl = I I2 = Ilc 2,

since ck is a k-vector, the residual sum of squares is

computed directly as lrkjlj, rather than by subtraction which

would mean a loss of accuracy due to cancellation. This is

recommended, especially if the mean residual sum of squares is

to be used in sensitive tests for significance levels. The

common criterion for terminating the selection process is the

ratio of the reduction in residual sum of squares caused by

the next candidate variable to be considered to the residual

mean square from the model including that variable. This

criterion can be expressed in terms of a critical "F-to-enter"

or in terms of a critical "significance level to enter" (SLE),

where F is the "F-test" of the partial sum of squares of the

variable being considered. We can compute the "F-to-enter",

Fe, for the kth variable by using the residual sum of squares

before and after the insertion as in (2.6). Let RSSkl =

(rk. T(rR 1 ) and RSS k = (rk)T(rk) be respectively the residual

sum of squares after each variable addition. Also let (n - m)
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be the degrees of freedom for the last model, where n and m

are the numbers of rows and the columns of the current matrix

X of the independent variables. After the above, the "F-to-

enter" is

Fe = RSSk-. - RSSk
RSSk/(n-m)

To compute the covariance matrix of the regression

coefficients bk using the normal equations, (XkTXk) -1 usually is

computed. For avoiding this numerically unstable process, a

new procedure is followed in this algorithm. Using the above

orthogonal decomposition, it is found that:

(XkXk) -1 = (R-) r(Rk- ) ,

where RkT = (R-1)T = (Rk) - . The approach of the algorithm is

to solve RkVk = I, and compute (XkTXk) -1 as Vk'Vk. Hence, Vk is

updated as follows:

S0) r 0 Vk 0

02 ' ) = (~:z- : ( 1 J k l a rV=- Rk Vk.

Thus, Vk differs from Vkl only in the bordering of a new row

and column. The above updating of Vk is mathematically

equivalent to forwardsolving RkTVk = I directly. Notice that

the computation of variances (i.e., the diagonal of the
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covariance matrix) of the bk requires only on the order of k

multiplications and additions. The variances of bk are needed

for significance tests (i.e., t-test and F-test).

Having entered k variables (columns) into the

regression, we have the following factorization:

X = Qk Ak r] 0 (

(k) (p-k) (1)

where Q. is n x 1: with orthonormal columns, Rk is k x k upper

triangular, and

Qkrk = 0, QkTAk = 0, Ck = Qk y. (2.12)

Now, to delete the jth regressor, where 1 < i < k, the next

steps are followed. The columns of X are permuted, so that for

some permutation matrix P,

I Q R k ,(1 , 2Rt ( , 2 ) j , 2 T i r , C k , 2)

(xO k A, k 0 0k 122 J2Tr, k2 (.3
0 0 0 X 0

(j-1) (k-j) (1)(p-k)(1)

For k = 6 and j = 3, the right-hand factor looks like the

following:
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'xx xxxx

X XXX X(Rk,(1,1) Rk, (1,2 ) 1 X , X X

0 Rk( 2 , 2 ) 'J,2) x x x

XX

x

where x's denote possible nonzeros, and zeros are left blank.

After that, by using a Givens transformation or (rotation),

the subdiagonal of this matrix is annihilated. A Givens

rotation is any orthogonal matrix of the form

Gjk

(1-1) (k-!+l) (n-k) (1)

where Gjk is of the form

fy 0 . . .0 a

0 1 0

0 1 0
a 0 * . 0 -y

The 4 and k subscript in Gjk correspond to the row numbers

associated with the y's: The first - is in row k and the

second I is in row j. Next the ecuation (2.13) is partitioned

and after using the orthogonality of Givens rotations and
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performing multiplications, the following equation is

obtained:

R k. (,.1) Rk. (1,.2) Sj. 1 Tk. 1 Ck. 1

Qk, 1 Qk, 2 GT Ak k 0 GR0.(2,2) Gs0,2 GIt,. GcO,2  (2.14)
0 0 T 100 of 0 07 1

Furthermore (2.14) is repartitioned and relabeled to get its

last shape:

(k-i) (p-k+1) (1) (k-i) (p-k+1) (1)

Note that (2.14) holds with k replaced by k - 1 and that the

deleted column is ready to reenter the regression at any time.

The above algorithm uses approximately n(p+2k-3i)

multiplications and additions.

However, the chosen column to drop is that one

which yields the smallest increase in the residuals. This

increase for the jth independent variable is I lfjI 2/ 1Iujl 2 , where

0, is the dth regression coefficient, and Iv jjl 2 is the 4th

diagonal element of (XKTXk) - I. Thus the column to be dropped, if

a test for lack of significance is satisfied, is the column 4

for which IflI/ liju is smallest.
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b. Adding and Deleting Observations

Now n rows of X have entered into the regression,

and an additional row xT and observation n of y is going to be

inserted. In this situation, a factorization has taken place

and we have:

xn-1 Yn-i I = XT n
X T n 07 1 0' OT

where Q. is n x o with orthonormal columns, R. is P x P upper

triangular, also

QnTQ, = I and Pxp, QnTr n = 0, and Ck = Q TYn- (2.15)

Furthermore the Givens rotations are applied and after

relabeling, repartitioning and performing some elementary

operations we get the following:

Notice that (2. 15) holds with n replaced by n + 1 and that the

above algorithm requires n + 1 additional storage locations

for _t. However, we can easily update V = R - , since

X=Rn J= (RD" rX) (V"),

and we apply the Givens rotations to get:
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I (R T X)GT = (R 41  0)V.. R.V .
4 0)

Now we want to delete the jth observation. Then if

XT is the jth row of X, n is the jth entry of y, qT is the jth

row of Q, and p is the jth entry of r, a permutation matrix P

can be obtained such that:

Xr TI !
f) R. ]( R nCn

= r P P or 11 o r o T

=q 1 p, 17 o

Next, we apply the Gram-Schmidt process. After this we have:

I(A=aY=(1-qrq) , a 4=-kX, 1--Irf, r,3_j=f-jc;

when a = 0, (rT,w) is chosen by a special feature of the

orthogonalization code. Now if we use this orthogonalization,

we get:

XIO!.a 3o- or a 1 or 0~ 07' 1 . (2.16)

X rn Tw Or0' 1,).Or 1) 1%qr w 0 )1,~~

Next we choose Givens transformations such that, (qT, )G T

(q T, w)Gp~,+1 ... G1 .+ 1 = (OT, T). Since I (qT, w) = 1, it follows

that r = ±1. So the equation (2.16) can be written as:
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G 70' G R Cj

o'*I Yj.o1 1 or
Xa- Yn± =Q q Rn-1 0 T-j

=x ]qTj 0 J( (2.17)

QOr jIor 1

because the matrix

Z1 --r ° '
has orthonormal columns it follows q* = 0 and because we have:

G0R.r= Gl,p+, . • Gp,p+ 0M= R

where Ri is an upper triangular matrix. However from the

equation (2.17) above, we obtain the desired factorization

which is:

-V.-Jr._J[ or

and we can recover the dropped row by:

X = , q =.y +

Finally, we have to update V = R-T . Now,
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V J(Rfl: GTGq> :J
0OT1 qT i q 

o

0 R~T U(n *!j V TV+U*T RnTV+

Since 7 ±i, it follows that u* = 0. Hence R.-l TVn1 = I, and

V,- is the desired update [Ref. 10].

3. Tony F. Chan (1986)

An algorithm is presented for computing a column

permutation R and a QR factorization A = QR of an n by m (n

? m) matrix A such that a possible rank deficiency of A will

be revealed in the triangular factor R having a small lower

right block. For matrices of low rank deficiency, the

algorithm reveals the rank of A, and the cost is only slightly

more than the cost of one regular QR factorization. An upper

and lower bound on the singular values of A are stated. These

can be used to infer the numerical rank of A.

A very useful factorization of an n by M (n > m)

matrix is the QR factorization, given by AH = QR, where HER 
n,

is a permutation matrix, QER has orthogonal columns and

satisfies QTQ = In, and RERnxn is upper triangular.

If A has full rank, then R is nonsingular. In many

applications in which A is nearly rank deficient, it is

desirable to select the permutation so that the rank
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deficiency is exhibited in R having a small lower right block.

For if R is partioned as

R R11 AR12

where R22 is d by d, then it is easy to show that

1-r-(A) R2 2 ,12 where we have used the notation U1 to denote

the ith singular value of A, with a 1  0 2  .. on.

Therefore, if |R|212 is small, then A has at least d small

singular values and thus is close to being rank d deficient.

The converse, unfortunately, is not true. In other words, if

A has d small singular values, then it is not guaranteed that

a given QR factorization of A has a small IR2 |2!. LetAFE

be the matrix of order n illustrated below:

11 -c -c . -c

0 1 -c. . . -c

A3= diag(l S,s 2 ... ,s n - ) C

O . .00 1

where s and c satisfy S2 + c 2 = 1. For n 50, c = 0.2, we have

on(A) Z 10-4 . On the other hand, A, is its own QR factorization

and obviously has no small R22 block for any value of d.

Besides being able to reveal rank deficiency of A, a

QR factorization with a small R22 block is very useful in many

applications, such as in the rank deficient least squares
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problem and in the subset selection problem. Therefore a

variety of techniques have been proposed to compute it. Since

QR factorization is essentially unique once the -mucation iI

is fixed, these techniques all amount to finding an

appropriate column permutation of A. Perhaps t- ,est known of

these is the column pivoting strategy. Although this strategy

is usually very effective in producing a triangular factor R

with small IR221', very little is known in theory about its

behavior, and it can fail on some matrices. Chan's algorithm

does not require computing the SVD of A and is most closely

related to one recently developed by Foster

[Ref. 11].

a. Revealing Rank One Deficiency

Assume that A is nearly rank one deficient. We

would like to find a column permutation of A such that the

resulting QR factorization has a small pivotal element r,,. It

turns out that this permutation can be found by inspecting the

size of the elements of the singular vector of A corresponding

to the smallest singular value a,. This procedure was first

pointed out in 1976 [Ref. 123.

Assume that there is a vector x E R' with I!xl1 2  1

such that i!Ax"2 = E, and let n be a permutation such that if

nTx = y, then I7rnl = lyll, and IlyI =2 = 1X = . Such a x can be
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obtained by the LINPACK10 condition estimator. Now, because

of these we have I17nl vin and furthermore

r Ax =FA H 117 = By=

Therefore,

e = IAx 2 = IQTAxI2 = IR yl2  Ip~ I,

from which we have the result, Ip.I < vn e. Now let v E Pf with Iv1 = 1

be the right singular vector of A corresponding to the

smallest singular value On. Then we have

IAv2 = cF.

Therefore, by the above, if we define the permutation H by

I (I1v) L' = IvI-,

then AR has a QR factorization with a pivot Pnn at least as

small as V'Iai in absolute value.

Since only the permutation H is needed, it is not

necessary to compute the SVb of A in order to find v exactly.

In practice, one can use a few steps of inverse iteration to

compute an approximation to v from which the permutation H can

be determined. In the more interesting case where , the

'°Together, LINPACK and EISPACK represent the state of the
art in software for matrix computation.
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inverse iteration should converge rapidly. This suggests a two

pass algorithm in which one first computes any QR

factorization of A, then performs inverse iteration with R to

find an approximate v, then determines H, and then computes

the QR factorization of AN.

b. Revealing Higher Dimensional Rank Deficiency.

In this section, we consider the case where A is

nearly d deficient, with d > 1. Our goal is to find a

permutation H such that if

AII = QR =- Q (RO1 R12)

is the QR factorization of AN, with R22 E Rdxd, then IR 221 is

small in some norm.

A natural way to extend the one dimensional result

of subsection a is to repeatedly apply the one dimensional

algorithm, for d 1,2,...,Rjj, the leading principal

triangular part of R. Suppose that we have already isolated a

small d x d block R22. To isolate a small (d+l) x (d+l) block,

we compute, using the one dimensional algorithm given in

subsection a, a permutation P such that R11P = 9 1A2, is the QR

factorization of R11P and where the (n-d, n-d)th element of R11

is small. Then with
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where, P is a permutation matrix such that P E R'xi,

I(P2v) 1 I = PTvl. and the singular vector V E Ri corresponding

to Q,(R,,) with II U 2 = 1, and 6 i = Uin(RII) , also

0 (Q 1 )

After the above, it can be easily verified that

is the QR factorization of Aft.

To make the above procedure more understandable,

the updating process is illustrated for n = 5 and i = 2. The

permutation is defined by moving the second column of R to the

last column. Thus

x xx x
X X X X

R1 1 = C x x +

Ux +

where again, x = any nonzero element, + = nonzero element

being introduced and fl = element being annihilated. So working

from the left in planes (i,i+l), (i+l,i+2), ... , (n-l,n) we
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annihilate the subdiagonal of RH1 by rotations. Simultaneously

we compute Q = QQ,. The computation It = LIP is trivial, like

that of RH1 . If Cmn(Rll) is "tiny" then we have for n = 5,

xxxxx

A=Q~l ~ X X XX

XX

with E also tiny. If E is negligible we may drop the last row

of f and the last column of Q to get

( XX X R

A X X

X

with Q having orthonormal columns. Now if we annihilate the

last column of the upper trapezoidal matrix, as before, from

the bottom to top, and then drop the last columns of the H and

R matrices, we obtain A -= CW.

The above algorithm, to produce the desired QR

factorization, is based on the following two assertions for i

= n, n-l, ..., n-d+l:

E R11 has a small singular value so that the (i,i)th

element of R11 is guaranteed to be small.
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* The last [i.e., the (n-i)th] row of Q1R1 2 is

small.

If these two assertions are true, then the lower

(n-i+l) x (n-i+l) block of R is small and we have the desired

QR factorization. But these two assertions are true because of

the following lemmas proved in [Ref. 13].

Let B E Rn k be a matrix containing any subset of k

columns of A. Then

on -(B) = ak(B) Ok(A)

Also if the matrix W [Wn-r+1, ... ,W] r Rxr has been

computed by the above algorithm then it should satisfy the

following properties:

" jlwi!l2 = 1,

* (w,) 3 = 0 for j > i,

" I(wJ)iI = 11 will>=l/ ,,

1 IAIlw I 2  = 6 < ai(A) .

Finally, Chan's algorithm [Ref. 13]

computes a permutation H and a QR factorization of A given by

AH = QR where the elements of the lower d x d upper triangular

block of R satisfies

J-1

.I u10 + 2(J1k)kVk<2(-1-'
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for n-d < i j n.

Very often, it is desirable to be able to infer the

rank of A from its QR factorization by estimating the small

singular values of A from the triangular factor R

[Ref. 14]. For this, we state bounds on the singular

values of A in terms of the matrices R and W, given by the

following inequality, for 1 < j < d,

-31 (Winjl n ! IA2 12 -' 0 n-Ji V 1(W2 1

where, W E Rn ,, R E R' and computed by the rank revealing

algorithm, R22
J and W? denote the lower right j by j upper

triangular blocks of R and W iespectively. These bounds are

proved in [Ref. 13].

Now using the obtained AH = QR factorization we can solve

the least square problem Ax = b as follows. Let r be the rank

of the n x m matrix A, then the regression coefficients are

given by:

x = Hni((Rii)- Q.ib)

where i = 1, 2, 3, ... , r.[Ref. 15]

The work for the A = QR factorization is given by:

W(r) = m2 (n - m/3) + Im2r + 2m2r, where I is the number of

inverse iterations used at each step. Usually I = 2 is

sufficient in practice. So
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W(r) = m2 (n - m/3) + 4m 2r. (2.18)

C. PROCESS

In the problem of finding a vector x G Rn such that Ax

b where the data matrix A E Rm and the observation vector

b E R' are given and m > n when there are more equations than

unknowns, we say that the system Ax = b is overdetermined.

Usually an overdetermined system has no exact solution since

b must be an element of range (A), a proper subspace of R'.

This suggests that we strive to minimize IlAx - bjjp for

suitable choice of p. Different norms render different optimum

solutions. However, much progress has been made in this area,

and there are several good techniques available for 1-norm and

m-norm minimization. The oldest method for solving the full

rank least squares problem is the method of normal equations.

The accuracy of the computed normal equations solution depends

on the square of the condition number, and the algorithm is

not always accurate.

For the above reason some techniques are established

based on the QR factorization method. The Householder and

Gram-Schmidt QR approaches to the least squares problem are

more stable than the normal equation method. Furthermore

techniques for rank revealing QR-factorization (i.e., Chan's

algorithm discussed in subsection 3) can give a solution, to

the subset selection problem even if A is nearly rank

deficient.

54



In the following chapters we will try to compare the

results of the above algorithms computationally to verify the

effectiveness of each on the least squares problem.
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III. RESULTS AND COMPARISONS

A. PREVIOUS COMPARISONS

There have been a number of studies comparing Householder

and Modified Gram-Schmidt QR techniques to form an orthonormal

basis of %(A) [Ref. 16]. Moreover, in Elden's paper

there is a comparison between his and Efroymson's algorithm

for updating regressions. There are comparisons in work and

accuracy between the Classical and Modified Gram-Schmidt

methods in the Gragg-Leveque-Trangenstein paper. Tony Chan

also compares his column permutation QR factorization

algorithm with the regular QR algorithm, in case of required

work [Ref. 17]. Chan's comparison is applied only on

the QR factorization part of the regression updating

procedure.

Furthermore, an algorithm for solution of the subset

selection problem is presented in a technical support package

of NASA Tech Briefs [Ref. 183 that can be mentioned

as a modified Chan's algorithm. So a comparison can be done

between these algorithms. Finally a justification of the use

of the reorthogonalization in Gram-Schmidt QR factorization is

presented in the Daniel-Gragg-Kaufman-Stewart paper

[Ref. 19].
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B. MODEL AND DATA

The data in TABLE II-1 will be used to illustrate the

model selection methods in the full rank case. In the table

below there are two matrices, the 13 x 5 matrix X consisting

of a column of ones, followed by the 4 column vectors of the

observations on the independent variables, and the 13 x 1

column vector Y of observations of the dependent variable. In

order to conform with previous results, the data utilized in

this experiment is identical to that used in Elden's algorithm

[Ref. 8]. We began the stepwise regression analysis by

inserting and deleting columns of the observation matrix X and

we continued by inserting and deleting rows of the model.

The data in TABLE 11-2 and TABLE 11-3, have one and two

dependent columns respectively. We obtained the first of them

by subtracting columns 2 and 3 of the data in TABLE II-1 and

the second by repeating the first column of the same data.
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TABLE 11-1

CASE STUDY 1 (INPUT DATA)

MATRIX OF OBSERVATIONS

COLUMN
VECTOR OF

MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES OBSER. ON
DEPENDENT
VARIABLES

1.00 7.00 26.00 6.00 60.00 78.50

1.00 1.00 29.00 15.00 52.00 74.30

1.00 11.00 56.00 8.00 20.00 104.30

1.00 11.00 31.00 8.00 47.00 87.60

1.00 7.00 52.00 6.00 33.00 95.90

1.00 11.00 55.00 9.00 22.00 109.20

1.00 3.00 71.00 17.00 6.00 102.70

1.00 1.00 31.00 22.00 44.00 72.50

1.00 2.00 54.00 18.00 22.00 93.10

1.00 21.00 47.00 4.00 26.00 115.90

1.00 1.00 40.00 23.00 34.00 83.80

1.00 11.00 66.00 9.00 12.00 113.30

1.00 10.00 68.00 8.00 12.00 109.40

To obtain the data in the Table 11-2, (a non-full rank

matrix), we replaced the column 4 of the fable II-1 with a new

column, column 6. This new column was obtained by subtracting

columns 2 and 3 of the matrix of observations in Table II-1.

Now the new matrix of observations has a linearly dependent

column and so it is rank one deficient.
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TABLE 11-2

CASE STUDY 2a (INPUT DATA)

MATRIX OF OBSERVATIONS

COLUMN
VECTOR OF

MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES OBSER. ON
DEPENDENT

_VARIABLES

1.00 60.00 7.00 26.00 -19.00 78.50

1.00 52.00 1.00 29.00 -28.00 74.30

1.00 20.00 11.00 56.00 -45.00 104.30

1.00 47.00 11.00 31.00 -20.00 87.60

1.00 33.00 7.00 52.00 -45.00 95.90

1.00 22.00 11.00 55.00 -44.00 109.20

1.00 6.00 3.00 71.00 -68.00 102.70

1.00 44.00 1.00 31.00 -30.00 72.50

1.00 22.00 2.00 54.00 -52.00 93.10

1.00 26.00 21.00 47.00 -26.00 115.90

1.00 34.00 1.00 40.00 -39.00 83.80

1.00 12.00 11.00 66.00 -55.00 113.30

1.00 12.00 10.00 68.00 -58.00 109.40

Furthermore in Table 11-3 we inserted once more the column

1 of the matrix in Table 11-2 as a new column 7. This column

took the third place in the matrix and reduced its rank to

rank two deficient.
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TABLE II-3

CASE STUDY 2b (INPUT DATA)

MATRIX OF OBSERVATIONS

COLUMN
VECTOR OF

MATRIX OF OBSERV. ON THE INDEPENDENT VARIABLES OBSER. ON
DEPENDENT

_VARIABLES

1.00 60.00 1.00 7.00 26.00 -19.00 78.50

1.00 52.00 1.00 1.00 29.00 -28.00 74.30

1.00 20.00 1.00 11.00 56.00 -45.00 104.30

1.00 47.00 1.00 11.00 31.00 -20.00 87.60

1.00 33.00 1.00 7.00 52.00 -45.00 95.90

1.00 22.00 1.00 11.00 55.00 -44.00 109.20

1.00 6.00 1.00 3.00 71.00 -68.00 102.70

1.00 44.00 1.00 1.00 31.00 -30.00 72.50

1.00 22.00 1.00 2.00 54.00 -52.00 93.10

1.00 26.00 1.00 21.00 47.00 -26.00 115.90

1.00 34.00 1.00 1.00 40.00 -39.00 83.80

1.00 12.00 1.00 11.00 66.00 -55.00 113.30

1.00 12.00 1.00 10.00 68.00 -58.00 109.40

C. SIMULATION

As mentioned, the three compared algorithms use a QR

factorization technique to solve the regression problem. But

the three techniques used have different philosophies and

different advantages and disadvantages. However, to obtain the

numerical results needed for the comparison we used three
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analogous sets of MATLAB codes. It is important that Elden's

algorithm is not a "full" updating regression algorithm

because there is no way to update regressions using

Householder QR factorization. Elden adds or deletes columns or

rows at the beginning or the end of the observations matrix

and does not explicitly update the Householder QR

factorization. Because of this we did not implement Elden's

algorithm. Instead, we used the basic QR factorization

algorithm to solve each individual problem. For column

insertions and deletions on the right of the matrix our

algorithms are computationally equivalent with Elden's

algorithms.

D. VALIDATION

A numerical example was needed to illustrate the theory

developed in Chapter II, so for each of the three algorithms

we ran the corresponding MATLAB codes on the data of the case

study. All computations are done on a 286 PC in double

precision, with a relative machine precision of about 10-16.

Notice that during the stepwise procedure on case study 1,

there was no rank deficient case, so there was no illustration

of the effectiveness of Chan's algorithm to reveal the

numerical rank of a given matrix.
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E. MEASURES OF EFFECTIVENESS

1. Case Study 1 (Full Rank Case)

In order to compare the performances of the algorithms,

the STSC'S Statistics/Graphics package STATGRAPHICS 4.0 was

used on the same data. The results of the algorithms and

STATGRAPHICS stepwise variable selection procedure are

presented in the following tables.

STEPWISE REGRESSION ANALYSIS WITH ORTHOGONAL

TRANSFORMATIONS

NUMBER OF OBSERVATIONS 13

STEP N' 1

TABLE III-1. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 1.

VARIABLE ENTERED AFTER THE COLUMN OF ONES: Column 5

(1) (2) (3) (4)
GRAGG- S.G.S.

ELDEN LEVEQUE- CHAN STATGRARH.
TRANGENST. STSC

CONST. 117.5679312 117.5679312 J117.56793121 117.567931
VARIABLE
COEFFICIENTS

ALPHA5 -0.7381618 -0.7381618 ]-0.7381618 -0.738162

RES.
SUM 883.8669169 883.8669169 883.8669169 881.89616
SQUAR.

Fe 22."985202 22.7985202 22.7985202 22.7985
LEVEL

F OF
GENER. 22.7995203 22.7995203 22.7995203 22.80
MODEL6
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STEP N2 2
TABLE 111-2. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 2.

VARIABLE ENTERED: Column 2

I_______(1 [ (2) J (3) ] (4)
CONST. 11-103.0973816 [ 103.0973816 T103.0973816 103.097382

VARIABLE
COEFFICIENTS

ALPHA5 -0.6139536 -0.6139536 -0.6139536 -0.613954

ALPHA2 1.4399583 1.4399583 1.4399583 1.439958

RSS 74.7621122 74.7621122 74.7621122 74.7621

Fe 108.2239093 108.2239093 108.2239093 108.2239

F GEN. 176.6269531 176.6269531 176.6269531 176.6270
MODEL ___ I I

STEP NQ 3
TABLE 111-3. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 3.

VARIABLE ENTERED : Column 3

(1) (2) (3) (4)

CONST. I71.6483069 1 7 1 .6 4 8 3 0 6 9  71.6483069 71.648307

VARIABLE
COEFFICIENTS

ALPHA5 -0.2365402 -0.2365402 -0.2365402 -0.236540

ALPHA2 1.4519379 1.4519379 1.4519379 1.451938

ALPHA3 0.4161098 0.4161098 0.4161098 0.41611

RSS 47.9727294 47.9727294 47.9727294 47.9727

Fe 5.0258647 5.0258647 5.028647 5.0259

F GEN. 166.8316801 166.8316801 166.831o801 lG.8317
MODEL _
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STEP Ng 4
TABLE 111-4. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 4.

VARIABLE REMOVED: Column 5

_ _ (1) (2) (3) (4)

CONST. 52.5773489 52.5773489T 52.5773489 52.577349

VARIABLE
COEFFICIENTS

ALPHA2 1.4683057 1.4683057 1.4683057 1.468306

ALPHA3 0.6622505 0.6622505 0.6622505 0.662250

RSS 57.9044832 57.9044832 57.9044832 57.9045

Fe 1.8632873 1.8632873 1.8632873 1.8633

F GEN. 229.5036971 229.5036971 229.5036971 229.5040
MODEL

STEP Ng 5
TABLE 111-5. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 5.

EOBSERVATION ENTERED: Row 3, (a second time)

(1) (2) (3) (4)

CONST. 5:.6817201 52.6817201 52.6817201 1 52.681720

VARIABLE
COEFFICIENTS

ALPHA2 1.4584656 1.4584656 1.4584656 1.458466

ALPHA3 0.6594452 0.6594452 0.6594452 0.659445

RSS 59.9550974 59.9550974 59.9550974 59.9551

Fe

F GEN. 250,3437770 250.3437770 250.3437770 250.3438
MODEL _
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STEP W 6
TABLE 111-6. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 6.

IOBSERVATION ENTERED: Row 2, (a second time)

11 (1) J (2) (3) (4)

CONST. 53.0380112 53.0380112 53.0380112 53.038011

VARIABLE
COEFFICIENTS

ALPHA2 1.4484905 1.4484905 1.4484905 1.448490

ALPHA3 0.6549147 0.6549147 0.6549147 0.654915

RSS 60.8055442 60.8055442 60.8055442 60.8055

Fe

F GEN. 312.7948771 312.7948771 312.7948771 312.7950
MODEL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

STEP W 7
TABLE 111-7. Summary Statistics for Stepwise Selection of
Variables for the Data in TABLE II after step 7.

IOBSERVATION REMOVED: Row 1

(1) 1 (2)_ (3) (4)

CONST. 53.0380116 153.0380116 53.0380116 53.038012

VARIABLE
COEFFICIENTS

ALPHA2 1.4484905 1.4484905 1.4484905 1.448491

ALPHA3 0.6549147 0.6549147 0.6549147 0.6L,4915

RSS 60.8055442 60.8055442 60.8055442 60.8055

Fe

F GEN. 312.7948771 312.7948771 312.7948771 312.7949
MODEL
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2. Case Study 2 (Rank Deficient Case)

Here we want to test the thesis algorithms on a rank

deficient case. So we used the singular matrices in Tables II-

2 and 11-3. The first matrix has one linearly dependent column

(column 5) and the second two linearly dependent columns

(column 3 and 6). We applied the corresponding algorithms'

MATLAB codes to those matrices. The results of the algorithms'

effectiveness are shown in the following tables.

TABLE IV-I. Summary statistics for the rank deficient case,

(case study 2a).

RESULTS OF CASE STUDY 2a REGRESSION

(I) (2) (3) (4)

GRAGG- S.G.S.
ELDEN LEVEQUE- CHAN STATGRARH

TRANGENST. STSC

CONST. 3.216:*10 18  -146.000000 71.6483069

VARIABLE
COEFFICIENTS

ALPHA5 -0.0353*1018 2.000000 -0.2365402

ALPHA2 -0.0194*1018 2.5676*1014 1.4519379

ALPHA3 -0.0173*1018 -2.5676*1014 0.4161098

ALPHA6 -0.0132*0'B -2.5676*10'T 0.0000000

RES.
SUM 5.7494*1016 45.8653934 47.9727294
SQUAR.

F OF
GENER. 9.2803*10 -3' 116.4231889 166.8316801
MODEL L
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TABLE IV-2. Summary statistics for the rank deficient case,
(case study 2b).

RESULTS OF CASE STUDY 2b REGRESSION

_______ II(1 J(2)_ (3) (4)

CONST._I__.86* 1014__1-7.6870*10~1__71.6483097_______

VARIABLE
COEFFICIENTS

ALPHA5 -0.007242 3.8663*1012 -0.2365402

ALPHA7 -5.786*014 7.6870*1045 0.0000000

ALPHA2 0.708*1014 -3.8663*1012 1.4519379

ALPHA3 -0.708*1014 3.8663*1012 0.4161098

ALPHA6 -0.708*1014 3.8663*1012 0.0000000

RSS 59.17750 1.4738*10281 47.9727294

F GEN. 212.9952033 3.953*10 -31 166.8316801

MODEL

A discussion of the above results is given in the

following chapter.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL

The major emphasis of this thesis was to examine the

performance of three algorithms for updating regressions. As

mentioned, the algorithms examined were Elden (Householder),

Gragg-Leveque-Trangenstein and Chan. After running the

corresponding MATLAB codes we obtain the results shown in

Tables III and IV. The discussion of these results will be

divided into two categories: the accuracy and stability, and

th ! number of computations.

1. Accuracy and Stability

a. Full Rank Case

The results of the case study 1, in Table III, show

u!- that no one algorithm uniformly outperforms any other with

regard to accuracy in the full rank case. All algorithms give

exactly the same results in all steps.

b. Deficient Rank Case

Comparing the results of the case study 2 (TABLES

IV-l and IV-2) with the results of the case study 1 step 3

(TABLE 111-3) we can see that they are identical except for

the coefficients of variables ALPHA6 and ALPHA7. These
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variables are used only in the case study 2 and they

correspond to the linearly dependent columns of the matrix of

observations (see TABLES II-1 and 11-2). The values of these

variables' coefficients in both rank deficient cases are zero.

Because of the above we can say that the results of Chan's

algorithm in the rank deficient case without the linearly

dependent columns are the same as the other algorithms'

results in the full rank case. However in case study 2 (rank

one and rank two deficient cases) only Chan's algorithm gives

reasonable results. The results of the other two algorithms

are totally wrong. Now it is easy to understand that the

philosophy of Chan's algorithm is to drop the linearly

dependent columns of the matrix of observations and work with

the rest of them to obtain the regression coefficients.

2. The Number of Computations

To compare the volume of computation of the present

algorithms we consider that all m column vectors of an n x m

matrix A are added to the subspace.

a. Computing Regression Coefficients at Each Step

In the case where the regression coefficients are

computed at each step the work of algorithms is as follows.
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The number of flops" of Elden's method is about

2nm2 , (2(n - m)m' + 4m3/3 for producing the QR factorization,

m3/3 for updating the inverse of the triangular matrix and m3/3

for computing the regression coefficients). Elden's algorithm,

as mentioned in Chapter II subsection B1, is updating

regression without using at each step the matrix Q but working

only on the triangular matrix R. This procedure avoids

computations on matrix Q and so is cheap.

If the data matrix is not very rank degenerate Chan

uses same work as Elden on the updating regression procedure,

(Householder without updatina Q). Using the equation (2.18)

for this case with r = m we have a total work for the rank

revealing QR factorization of W(m) = nm2 + 1Im 3/3. Also the

amount of flops for computing the regression coefficients is

m3/3. In other words the work for Chan's QR factorization of

RH is about nm2 + 4m 3 flops.

Gragg-Leveque-Trangenstein's algorithm requires 8nm

flops for column insertion, 0 flops for column deletion, 3m(m

+ 2n) for row insertion, m(3m + 14n, flops for row deletion.

In this case the regressi n coefficients are computed at each

step we have to add the work of solving the triangular system

R.b, = c,. That requires a total of m 3/2 flops. This amount of

flops is because, as mentioned in Chapter II subsection B2,

"Flops number means the whole number of multiplications
and additions.
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this algorithm updates the regression using the matrix Q for

keeping the numerical stability. That means that in the worst

case the algorithm requires a total work of about 6m2 + 28nm

+m3/2 flops.

After the above we can see that Elden's and Gragg-

Leveque-Trangenstein's algorithms outperforms Chan's

algorithm. As mentioned, in this thesis we always examine the

case in which the observation matrix has more rows than

columns (i.e., n > m). Keeping a ratio n/m = 2 Gragg-Leveque-

Trangenstein's algorithm is the cheapest for n bigger than 18.

This means that for big applications this algorithm is the

cheapest.

b. Computing Repression Coefficients Once

In the case where the regression coefficients are

computed once we have a lower order work for this computation

which can be ignored. So the total work for the algorithms is:

Elden's 2nm 2 - m3/3, Gragg-Leveque-Trangenstein's 6m2 + 24nm

and Chan's nm2 + 11m 3/3. Keeping the same ratio as above Gragg-

Leveque-Trangenstein's algorithm is still the cheapest for n

bigger than 15.

B. RECOMMENDATIONS

In this thesis we examined three procedures of QR

factorization to update the variable selection problem. The
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above factorization can be also used on several other

mathematical and statistical procedures. Important research

can be done on using the QR updating algorithms to solve the

linear programming problem using the simplex method and

Karmarkar's algorithm.

As mentioned in Chapter III section D, we used Householder

codes to simulate the procedure of Elden's algorithm. A closer

comparison can be done by a full simulation of this algorithm.

Finally, it should be interesting to extend this thesis in

case where we have an observation matrix with fewer rows than

columns (i.e., n < m).
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APPENDIX A. MATLAB CODES FOR HOUSEHOLDER'S (ELDEN) ALGORITHM

The codes qrhf.in, qrhup.in, qrucd.in, qruri.in, qrurd.m

qrorth. m and rot. m were reproduced here with Prof essor'Is Gragg

p e rmis sion.

* function W = qrhf (A)

% W = qrhf(A):

% W is a pack formed array which contains the HOUSEHOLDER QR
% FACTORIZATION of A. We have A = QR with Q unitary and R
% upper trapezoidal with nonnegative diagonal elements. The
% commands R = W, [Q R] = qrhup(R), executed by qrh, unpack.
% However this is not necessary, and in fact it's inefficient,
% for most applications.

% copyright (c) 16 February 1991 by Bill Gragy. All rights
% reserved.

% qrhf calls sgn.

% begin qrhf
[n m] = size(A);
for k = l:min(m,n)

q =k:n; u. = A(q,k); r = norm(u); t = ()
if r > 0

t = u(l); s = - sgn(t); u(1) = t - r*s;
t = abs(t); t = 1 + t/r; d = sqrt(2*t);
A(q,k) = u/d; d =r*sqrt(t); u = u/d;
if k < mn

p = k+l:in; W =A(q,p); W = W - *u*)
t = W(l,:); W(l,:) = s'*t; A(q,p) = W

end
end

end
W = A;

% end qrhf

function [Q,R] = qrhup(R)

% [Q R] = qrhup(R):
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% Computes the ELEMENTWISE QR factorization of A given the
% output R. Thus [Q R]=qrh(A):=qrhup(qrhf(A)) is essentially
% equivalent with matlab's function qr, except that we execute
% an inexpensive unitary diagonal scaling to make the diagonal
% elements of R nonnegative. It is NOT USEFUL to have Q in
% elementwise form to solve the LS problem, norm(b - Ax) =
% minimum. The purpose of matlab having Q in such form may be
% to avoid having to explain how the Householder least squares
% algorithm really works.

% Copyright 16 February 1991 by Bill Gragg. All rights
% reserved.

% qrhup calls sgn.

% begin qrhup
[n m] = size(R); s = - sgn(diag(R)); e = ones(n-m,l);
Q = diag([s;e]); q = m+l:n; z = zeros(n-m,l);
root2 = sqrt(2) ;
for k = min(m,n):-l:l

q = [k q]; u = R(q,k); r = norm(u);
if r > 0

u = u/(r/root2); T = Q(q,q); Q(q,q) = T -u*(u'*T)

end
R(k,k) = r;
if k < n

R(k+l:n,k) = z;
end
z = [z;O];

end
% end qrhup

function W = sgn(Z)

% w = sgn(z) or W = sgn(Z):

% For z a complex number w is z/abs(z) if 2 = 0 and + 1 if
% z = 0. Thus sgn is the same as matlab's sign function EXCEPT
% when z = 0. We always have abs(w) = 1. W is the elementwise
% (Schur) sgn function of the complex matrix Z.

% Copyright (c) 19 January 1991 by Bill Gragg. All rights
% reserved.

% sgn calls no extrinsic functions.

% begin sgn
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W = sign(Z); p = find(Z == 0); n = length(p);
W(p) =ones(n,l);

% end sgn

% Total flops (scalar case, see csgn):
% Real ca- 0 flops. Complex case: 1 sqrt + 4 mults + 1
% add.

function [x,r] = qrhlsl(W,b)

% [x r] = qrhlsl(W,b):

% Given that the HOUSEHOLDER QR FACTORIZATION of A, is stored
% in packed form in the array W, qhrs SOLVES the least squares
% problem norm(b - Ax) = minimum for x. It also efficiently
% computes the residual r := (b - Ax) . We assume that rank(A)
%= m <= n, where A 'as m columns and n rows.

% qhrs calls no extrinsic functions.

% begin qrhs
[n m] = size(W); root2 =sqrt(2);

% Forward solving: computing Q'b = H(m)H(n-1) ... H(l)b.
for k 1 :m

q =k:n; u = W(q,k); rl norm(u); d(k) = rl;
if rl > 0

u = u/(rl/root2); v = b(q); b(q) = v - *uv)
end

end
% Backsolving: solving Rx = bl := b(l:m) for x.

s = - sgn(diag(W)); x = zeros(m,l);
x(m) =s(m)

t *b(n)/d(m);
for k =m-l:-l:l

p = [k+1 p]; x (k) = (s (k)'I*b (k) - W (k, p) *x(p))/d (k);
end

% Computing the residual r.
if m < n r = b - W*x; else r = 0;
end

% end qrhlsl

function [Eb,RSS,F,Fe3 = regres2(Q,R,P,RSSp,b,r)

% [Eb RSS F Fe]= regres2(Q,R,P,RSSp,b,r):
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% Eb = E(b), is the expectation of beta of the linear least
% squares problem, no-m(b - Ax) = minimum, RSS is the residual
% sum of squares and F the statistic for a general linear
% hypothesis. Also Fe is the significance level to enter, SLE,
% "F-to-enter", for the new variable, on where A = QRP' is the
% QR general FACTORIZATION of A. p = A*x is the orthogonal
% projection of b onto R(A) and the residual vector r = b - pr
% = D - Ax, is the orthogonal projection of b onto N(A'), the
% orthogonal complement cf R(A). It is assumed that A is not
% a zero matrix.

% regres2 calls rows, cols, ones and norm.

% begin regres2

Eb = r + Q*R*P'*x;
A Q*R*P!; n = rows(A); m = cols(A);
e ones(n,l); RSS = r'*r; v = Q'*b;
f = (norm(v)-abs(e'*b)/sqrt(n))*

(norm(v)+abs(e'*b)/sqrt(n));
df = (n-m)/(m-l) ; F = (df*f)/RSS;
Ft = (abs(RSSp-RSS)*(n-m))/RSS;

% end regres2

76



APPENDIX B. MATLAB CODES FOR GRAGG-LEVEQUE-TRANGENSTEIN'S
ALGORITHM

function [Q,R] = qruci(Q,R,a,i)

% [Q Rj = qruci(Q,R,a.i):
0

% UPDATES the QR factorization A = QR when a is INSERTED as
% COLUMN i of A. Q has orthonormal columns and R is upper
% trapezoidal with at least as many columns as rows.

% Copyright (c) 20 July 1991 by Pill Gragg. All rights
% reserved,

% qruci calls qrorth and rot.

% begin qrliui
[r m] size(R); n = length(a); [q s t] =
qrorth (Q, a) ;
R(:,i+l:m+l) = R(:,i:m); R(:,i) = s; m = m + 1;
if r < n

Q [Q q]; R = [R;zeros(l,m)];
r r + 1; R(r,i) = t;

end
for k = r-l:-l:i

p = k+l:m; q = k:k+l; [c s t] =

rot (R(q, i) ) ;
R(q,i) = [t;0]; G = [c - s';s c']; Q(:,q) =

Q(: ,q)*G;
R(q,p) = G'*R(q,p);

end
if i < r

q = i+l:r; d = diag(R); d =

san(d(q));
D = diag(d); Q(:,q) = Q(:,q)*D; R(q,:) =
D'*R(q, :);

end
% end qruci

function [Q,R,a] = qrucd(Q,R,i)

% [Q R a] = qrucd(Q,R,i):
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% UPDATES the QR factorization A = QR when COLUMN i is DELETED
% from A. Q has orthonormnal columns and R is upper trapezoidal
% with at least as many columns as rows. The deleted column is
% called a [Ref 19].
% Copyright (c) 20 July 1991 by Bill Gragg. All rights
% reserved,

% qrucd calls rot.

% begin qrucd
if nargout > 2 a =Q*R(:,i); end,
[~r m] = size(R); R(:,i) =[; m = m - 1;
for k = i:r-l

p = k+l:m; q = k:k+l; [c s t] = rot(R(q,k));
R(q,k) = [t;0]; G = [c -s';s c'];
Q(:,q) = (,)G
if k < m R(q,p) G'*R(q,p); end

end
if r > m

r r-l q 1:r;

else
s sgn(R(r,r)); Q(:,r) =Q(:,r)*s;
R(r,:) = s'*R(r,:);

end
% end qrucd

function IQ,R] = qruri(Q,R,a,j)

% [Q R] = qruri(Q,R,a,j):

% UPDATES the factorization A = QR when a' is INSERTED as ROW
% j of A. Q has orthonorral columns and R is upper trapezoidal
% with at least as many columns as rows.

% Copyright (c) 20 July 1991 by Bill Gragg. All rights
% reserved,
% qruri calls rot.
% begin qruri

m = length(a); [n r] = size(Q);
n = n + 1; Q(j:n,:) = [zeros(l,r); Q(j:n-l,:)];
r = r + 1; Q(:,r) =zeros(n,l); Q(j,r) = 1;
R = Ra]
for k = 1:r-1
p = k+l:m; q = [k r];
[c a t] =rot(R(q,k))

R(q,k) = t;Q]; G = [c -s';s c'];
Q(:,q) Q(,)G
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edif k <m R(q,p) = G'*R(q,p); end

if r > m
r r-l q~lr
Q =Q(:,q); R q,;

else
s= sgn(R(r,r)); Q(:,r) = Q(:,r)*s;
R(r,:) = S*~,)

end
% end qruri

function [Q,R,a] qrurd(Q,R,j)

% [Q R a] = qrurd(Q,R,j):

% UPDATES the QR factorization A = QR when ROW j is DELETED
% from A. Q has orthonormal columns and R is upper trapezoidal
% with at least as many columns as rows. a' = A(j,)= Q(j, :)R
% is the deleted row.

% qrurd calls qrorth and rot.
% Copyright (c) 20 July 1991 by Bill Gragg. All rights
% reserved,

% begin qrurd
[n r] = size(Q); [r m] =size(R); t = [:j-1 j+l:n];
if r < n

q = zeros(n,l); q(j) = 1; r =r + 1;
Q(:,r) = qrorth(Q,q); R(r,:) =zeros(lm);

end
for k =r-1:-1:1

p =k:m ;q =[k r];
[c s u] =rot(Q(j,q));

Q(j,r) =u; G = -s c';c s5%;
Q(t,q) =Q(t,q)*G;

R(q,p) =G'*R(q,p);

end
r r - 1; q 1 :r; Q = Q(t,q);
a =R(r+l,:)'; R =R(q,:);

d =diag(R); d =sgn(d); D = diag(d); Q =Q*D;

R D R
% end qrurd

function [q,r,s,k] =qrorth(Q,a)

% [q r s k] = qrorth(Q,a) or q = qrorth(Q):
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%ORTHONORMALIZES column a against the columns of Q using
% REORTHOGONALIZATION. It is assumed that Q has (nearly)
% orthonormal columns. Let [n m] = size(Q). An error message
%occurs if m >n. For m<= mwe have

% [Q a] = [7Q q][I r]
o [s] with Q'q =0, s >= C

%and, if m < n,

% If m = n we take q :=0 and s :=0. If a is not input we
% take a :=0. For m <nand a 0we get aunitvector qin
% the orthogonal complement of the range of Q.

% qrorth calls no extrinsic functions.
% Copyright (c) 20 July 1991 by Bill Gragg. All rights
% reserved,

% begin qrorth
[n m] = size(Q);
if nargin < 2 a = zeros(n,l); end
if m > n error('Q has too many columns.'), end
if m== n q =zeros(n,l); r = Q*a; s= 0; k='0;

return, end
norma = norm(a) ; t = norma/2;
r= Q*a; b =a -Q*r; s =norm(b); k=l1;
if norma ==0 zflag = 1; k = 0; end
while 0 == 0

if s >t q= b/s; break, end
if k > 4 error('Process did not terminate in 5

iterations.'), end
if s <= t*eps/l0

Eu j] =min(norms(Q'));

if s ==0
s =eps/4; b(j) = s

else

edb(j) = b(j) + s*eps/4;

norma = s; k = k + 1/2;
end
t= s/2; b =b -Q*(Q*b); s norn(b); k k+l1;
end

end
if zflag r = zeros(m,l); S = 0; end

% end qrorth
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function [c,s,r] = rot(x,y)

% [c s r] = rot(x,y) or [c s r] = rot(z):
%

% Carefully computes the Gram-Schmidt QR factorization
0

% z := [x] = [c] r
% [y] [s]0

% Note that
%

% [x] = [C -s'] [r] =: QR
% [y] Is c'] [0]

% is a full QR factorization. This is a "tool of the trade" in
% computational linear algebra. Note that Q and Q' are
% ROTATIONS and that

% C c' s'] [x] = [r]
% [-s c ] [y] [0]

% Copyright (c) 28 October 1990 by Bill Gragg. All rights
% reserved.

% rot calls no extrinsic functions.

% begin rot
if nargin < 2 y = x(2); x = x(l); end
c = sign(x); s = sign(y); x = abs(x); y abs(y);
if y > 0

if x > y
t = y/x; u= sqrt(l + tt); r = x*u; v = t/u;
u = 1/u; c = u*c; s = v*s;

else
t = x/y; u= sqrt(l + t*t); r = yu; v = l/u;
u = t/u; c =u*c; s = v*s;

end
else

r = x; if r ==0 c = 1; end
end

% end rot

% Total flops:
% Real case: 1 sqrt + 5 mults + 1 add.
% Complex case: 1 sqrt + 11 mults + 3 adds.
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function [x,r] = qrmgsls(Q,R,b)

% [x r] = qrmgsls(Q,R,b):

% Solves the norm(b - Ax) = minimum for x given the QR
% factorization A = QR and computes the minimal norm rnorm
% using the MODIFIED GRAM-SCHMIDT process (mgs).

% qrmgss calls gfsb.

% begin qrmgsls
% Compute the "Fourier coefficients" c = Q'b and the residual
% vector r = b - Ax = b - QRx = b - Qc (I - QQ')b, WITHOUT
% COMPUTING x.

r = b;
for i = l:cols(Q)

q = Q(:,i); t = q'*r; c = [c;t];
end

% Compute r and backsolve for x.
x = gfsb(R,c); r = b - Q*c;

% end qrmgsls
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APPENDIX C. MATLAB CODES FOR CHAN'S ALGORITHM

function [Q,R,Pi,rank,W,delta] = rrqr(A,tol)
% R = rrqr(A,tol)
% [Q,R,Pi,rank,W,delta] = rrqr(A,tol)
%

% Compute a rank revealing QR factorization of N:
% A*Pi = Q*R = Q [ R 11 R 12
% [ 0 R22]
% such that Q is m-by-n, R is triangular n-by-n, and
% 1) R 11 is rank-by-rank and well-conditioned,
% 2) rank = numerical rank of A with respect to tol,
% defined as the number of singular values greater than
% tol,
% 3) norm(R_22) is of the same order of magnitude as the
% (rank+l)'th singular value.
0

% Also, return a matrix W whose columns are orthonormal and
% span an aproximation to the null "N" space of A, and the 6
% delta(rank:nl:2) containing lower and upper bounds for the
% last n-rank+l singular values of A (the first rank-i rows of
% delta are zero).

% If no tol is specified, sqrt(n)*norm(A,l)*eps is default.

% This program is an implementation of the algorithm described
% in the paper: T. Chan, "Rank Revealing OR factorizations",
% Lin. Alg. Appl. 88/89 (1987), 67-82.
% The use of the factor c max ratio was suggested in: C. H.
% Bischof, & P. C. Hansen, "Structure preserving and rank
% revealing QR-fact--izations", SISSC, to appear

[m,n] = size(A) ; dt ta = zeros(n,2) ; cmaxratio = 10;
if (nargin==l), tol = sqrt(n)*norm(A,l)*eps; end
if (nargout>4), W = []; end

% Compute an initial QR factorization A*Pi = Q*R.
[Q,R,Pi] = qr(A); Q = Q(:,l:n); R = R(l:n,:);

% Prepare for the iterations. Estimate smalle, singular
% value of R.

nu = 0; i =n;
[sest,v] = ccvl(R); if (nargout>5), delta(n,l) = sest; end

% Loop until a singular value estimate larger than tol is
% found.
while sest < tol, nu = nu+l;

% Update the matrix W.
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if (nargout>4), W = [[v;zeros(nu-l,l)],W]; end

% Find the element in v with greatest index, numerically
% within a factor c-max ratio of the numerically largest
% element.

vmax = norm(v,inf);
for k=i:-l:l

if (vmax <= abs(v(k))*c-max-ratio), break, end
end

% If necessary, generate the permutation that brings the pivot
% element of v to the last position, apply the permutation to
% W, Pi, arnd R, compute a new QR factorization of R(l:i,l:i),
% anid update Q and R.

if (k<i)
p =[k+l:i,k3; Pi(:,k:i) =Pi(:,p); R(:,k:i)= (,)
if (nargout>4), W(k:i,:) W(p,:); end
for j=k:i-l

[c,sJ = gen g(R(j ,j :n) ,R(j+l,j :n))
[R(j,j:n) ,R(j+l,j:n) ] =
appgleft(c,s,R(j,j:n) ,R(j+l,j:n));
R(j+l,j) = 0;
(Q(:,j),Q(:,j+l)l = appgright(c,s,Q(:,j),Q(:,j+l));

end
end

% Provide an upper bound for the i'th singular value.
if (nargout>5), delta(i,2) = norm(R(i:n,i:n)); end

% Estimate the smallest singular value of R(l:i-l,l:i-1),
% which is a lower bound for the (i-l) 'th singular value.

i = i-1; (sest,v] = ccvl(R(l:i,l:i));
if (nargout>5), delta(i,l) = sest; end

end

% Finish the computation. If nargout < 2, return R.
if (nargout>5), delta(i,2) = norm(R(rank:n,rank:n)); end
rank = n - nu; if (nargout>4), W = Pi*W; end
if (nargout < 2), Q =R; end

% This algorithm is described by T. Chan & P. Hansen [Ref 15].

function [x,r] = basic(Q,R,Pi,b,rank)

% [x r] = basic(Q,R,Pi,b,rank)

% Compute the basic solution. If the RRQR of A is
% A*Pi =Q*R = Q [ R_11 R -12 ]

% [0 R-22 ]
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% where A 11 is rank-by-rank, then the basic solution is
% x = Pi*[~ inv(R_11) 0 ]*Q'*b

% [ 0 01]

% Ref.: G. H. Golub & C. F. Van Loan, "Matrix Computations",
% Johns Hopkins, 1989. Subsection 5.5.6.

% Per Christian Flansen, UN'I-C, 07/11/90.

x = Pi(:,l:rank)*(R(l:rank,l2rank)\(Q(:,lrank)s*b));

r = b - Q*R*Pi*x;
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